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Introduction

• “Anomaly detection is the problem of finding patterns in data that do not 
conform to expected behavior.“[1]

• We are interested in Streaming Data:

• Where new data keeps coming in for judgement

• Where training uses ONLY the normal data

• Examples of Streaming Data:

• Incoming Data Packets in a network

• Incoming video frames received from a CCTV camera
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[1] V. Chandola and A. Banerjee and V. Kumar, “Anomaly Detection: A survey”, ACM Computing Surveys (CSUR), 2009



Motivation

• Our Approach: One-Class Classification based on Radial Basis Function (RBF) 
networks

• RBF networks have been around for a long time and can be used for classification 
and regression  Supervised Learning!

• RBF networks have been used for time-series classification

• Characteristics of RBF networks are:

• RBF networks are interpretable!

• RBF networks lend themselves to handling concept drift/shift!
3



The RBF Network
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• A local representation learning 
technique

• Each Kernel is responsible for a part 
of the input space

• The most commonly used activation 
function is Gaussian:
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The Elliptical Basis Function Data 
Descriptor (EBFDD) network 



Transforming the RBF Network to a One-Class Classifier

• Classical RBF networks cannot be applied to Anomaly Detection

• We need to cover the normal region with the tightest set of Gaussians

• Solution: Regularize the size of these Gaussians

• We modify RBF networks in 2 ways:

• We introduce elliptical Kernels

• We propose a novel cost function



EBFDD in More Depth …

• What is nice about the EBFDD network?

• Non-diagonal covariance matrices

• We can have elliptical kernels which
can rotate and elongate, at will

• This can help for better coverage and
a better understanding of the
distribution of the normal data
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The EBFDD Network

• The cost function to be minimized:

• Where:
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A Visual Representation of the 
EBFDD Network



2-Dimensional Normal Data



After K-means has Converged



After EBFDD has Converged



The Decision Boundary of EBFDD
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The Datasets 
and 

Experiment Setup



The Datasets We Have Used

Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic construction of anomaly detection benchmarks from real data. In: Proceedings of the ACM

SIGKDD workshop on outlier detection and description. pp. 16–21. ACM (2013)



Experiment Scenarios

• We have followed 3 approaches for generating anomaly detection scenarios 
from labelled datasets, each with N classes

1. One vs. All: Each of N classes is considered as Normal and everything else 
as anomalous  N Experiments

2. All vs. One: Each of N classes is considered as Anomalous and everything 
else as normal  N Experiments

3. Difficult Scenarios: Determine the 2 most difficult separable subsets, and 
consider one as Normal and the other as Anomalous  1 Experiment

Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic construction of anomaly detection benchmarks from real data. In: Proceedings of the ACM

SIGKDD workshop on outlier detection and description. pp. 16–21. ACM (2013)



Experiment Description

• Algorithms: EBFDD, RBFDD, Gaussian Mixture Model, Auto-Encoder, Isolation 
Forest, and One-Class SVM

• For every algorithm and scenario:

• For every combination of hyper-parameters:

• For 10 rounds:

 Training Data = Sample (no replacement) 80% of ALL Normal

 Test Data = Remaining 20% of Normal + All Anomalous

 Compute the AUC of the ROC curve

• Average the AUC’s across all 10 rounds

• Report the best averaged AUC for each algorithm with its corresponding 
winning hyper-parameters

17Code available on GitHub: https://github.com/MLDawn/EBFDD



The Experiment Results
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Results using AUC’s and Ranks



Results using AUC’s and Ranks
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Conclusions

• This paper presents a novel cost function, whose minimization can adapt the 
Radial Basis Function (RBF) network into a one-class classifier, i.e., EBFDD. 

• EBFDD utilizes elliptical kernels that can elongate and rotate to allow it to learn 
sophisticated decision surfaces.

• The empirical results show that the EBFDD network has a better overall 
performance than leading Anomaly Detection techniques across all the 
experiments.

• EBFDD suffers from:

• Large number of trainable parameters  Flexibility comes with a price!

• Covariance matrix inversion is expensive

• Sensitivity to the number of kernels



Future Work

• Add recurrent connections to the EBFDD network architecture to allow 
contextual anomalies within streams to be identified

• Deepening the EBFDD network (Esp. for Dimensionality Reduction):

• Transfer Learning!

• A hybrid model with a unified cost function

• A separate feature extractor + EBFDD network

• Investigating streaming scenarios with concept drift / concept shift
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